Mean value theorems for binary Egyptian fractions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binary Egyptian Fractions

Let Ak*(n) be the number of positive integers a coprime to n such that the equation a n=1 m1+ } } } +1 mk admits a solution in positive integers (m1 , ..., mk). We prove that the sum of A2*(n) over n x is both >>x log 3 x and also <<x log x. For the corresponding sum where the a's are counted with multiplicity of the number of solutions we obtain the asymptotic formula. We also show that Ak*(n)...

متن کامل

Mean Value Theorems on Manifolds

We derive several mean value formulae on manifolds, generalizing the classical one for harmonic functions on Euclidean spaces as well as the results of Schoen-Yau, Michael-Simon, etc, on curved Riemannian manifolds. For the heat equation a mean value theorem with respect to ‘heat spheres’ is proved for heat equation with respect to evolving Riemannian metrics via a space-time consideration. Som...

متن کامل

Mean Value Theorems for Generalized Riemann Derivatives

Let x, e > 0, uo < ... u O be real numbers. Let f be a real valued function and let A (h; u, w)f (x) h-d be a difference quotient associated with a generalized Riemann derivative. Set I = (x + uoh, x + Ud+eh) and let f have its ordinary (d 1)st derivative continuous on the closure of I and its dth ordinary derivative f('I) existent on 1. A necessary and sufficient condition that a ...

متن کامل

Harmonic functions via restricted mean-value theorems

Let f be a function on a bounded domain Ω ⊆ R and δ be a positive function on Ω such that B(x, δ(x)) ⊆ Ω. Let σ(f)(x) be the average of f over the ball B(x, δ(x)). The restricted mean-value theorems discuss the conditions on f, δ, and Ω under which σ(f) = f implies that f is harmonic. In this paper, we study the stability of harmonic functions with respect to the map σ. One expects that, in gen...

متن کامل

Subdifferential Rolle’s and Mean Value Inequality Theorems

In this note we give a subdifferential mean value inequality for every continuous Gâteaux subdifferentiable function f in a Banach space which only requires a bound for one but not necessarily all of the subgradients of f at every point of its domain. We also give a subdifferential approximate Rolle’s theorem stating that if a subdifferentiable function oscillates between −ε and ε on the bounda...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2011

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2011.04.001